منابع مشابه
Morse Groups in Symmetric Spaces Corresponding to the Symmetric Group
Let θ : g → g be an involution of a complex semisimple Lie algebra, k ⊂ g the fixed points of θ, and V = g/k the corresponding symmetric space. The adjoint form K of k naturally acts on V . The orbits and invariants of this representation were studied by Kostant and Rallis in [KR]. Let X = K\\V be the invariant theory quotient, and f : V → X be the quotient map. The space X is isomorphic to C. ...
متن کاملFinsler bordifications of symmetric and certain locally symmetric spaces
We give a geometric interpretation of the maximal Satake compactification of symmetric spaces X “ G{K of noncompact type, showing that it arises by attaching the horofunction boundary for a suitable G-invariant Finsler metric on X. As an application, we establish the existence of natural bordifications, as orbifolds-with-corners, of locally symmetric spaces X{Γ for arbitrary discrete subgroups ...
متن کاملMin-type Morse theory for configuration spaces of hard spheres
In this paper we study configuration spaces of hard spheres in a bounded region. We develop a general Morse-theoretic framework and show that mechanically balanced configurations play the role of critical points. As an application, we find the precise threshold radius for a configuration space to be homotopy equivalent to the configuration space of points.
متن کاملMorse Theory on Spaces of Braids and Lagrangian Dynamics
In the first half of the paper we construct a Morse-type theory on certain spaces of braid diagrams. We define a topological invariant of closed positive braids which is correlated with the existence of invariant sets of parabolic flows defined on discretized braid spaces. Parabolic flows, a type of one-dimensional lattice dynamics, evolve singular braid diagrams in such a way as to decrease th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Geometry
سال: 1969
ISSN: 0022-040X
DOI: 10.4310/jdg/1214428826